## CHAPTER

# Circumference and Area of a Circle 

## Lesson 11.1 Radius, Diameter, and Circumference of a Circle

## Add.

1. $2.486+0.75$
2. $0.394+4.657$

## Subtract.

3. $6.04-1.39$
4. $10.325-2.57$

## Multiply.

5. $2.64 \times 7$
6. $3.14 \times 6$

## Divide.

7. $21.36 \div 6$
8. $2.38 \div 7$

Round to the nearest whole number.
9. $21.62 \approx$ $\qquad$
10. $60.49 \approx$ $\qquad$

Round to the nearest tenth.
11. $20.094 \approx$ $\qquad$

1. $20.094 \approx$
2. $0.955 \approx$
$0.955 \approx$ $\qquad$

Name: $\qquad$ Date: $\qquad$

## Solve.

## Example

In the figure, $O$ is the center of the circle.

a) Name all the diameters that are drawn in the circle.

## $\overline{R U}$ and $\overline{T W}$.

b) Which line segment that is not a radius is not a diameter?

Explain why it is not a diameter.
$\overline{S V}$. It does not pass through the center $O$.
c) Name all the radii in the circle.
$\overline{O R}, \overline{O W}, \overline{O T}$, and $\overline{O U}$.

A radius of a circle connects the center of the circle to any point on the circle. It is half the length of the diameter.

In the figure, $O$ is the center of the circle.
13. Name all the diameters that are drawn in the circle.

14. Which line segment that is not a radius is not a diameter? Explain why it is not a diameter.
15. Name all the radii in the circle.

Name: $\qquad$

## Find the diameter of each circle.

## Example

The radius of a circle is 14 meters. What is the length of its diameter?
Diameter $=$ radius $\times 2$

$$
\begin{aligned}
& =\frac{14}{} \times 2 \\
& =28 \mathrm{~m}
\end{aligned}
$$

The diameter of the circle is 28 meters.
16. The radius of a circle is 13 feet. What is the length of its diameter?

Diameter $=$ radius $\times$ $\qquad$
$\qquad$
$=$ $\qquad$ ft

The diameter of the circle is $\qquad$ feet.
17. The radius of a circle is 3.25 feet. What is the length of its diameter?

## Find the radius of each circle.

## Example

The diameter of a circle is 8 meters. What is the length of its radius?

$$
\begin{aligned}
\text { Radius } & =\text { diameter } \div \frac{2}{2} \div \frac{2}{8} \\
& =-\frac{4}{m} \\
& =4
\end{aligned}
$$

The radius of the circle is $\qquad$ 8 meters.

Name: $\qquad$ Date: $\qquad$
18. The diameter of a circle is 32 inches. What is the length of its radius?

$$
\begin{aligned}
\text { Radius } & =\text { diameter } \div \square \\
& =\square \\
& =\square
\end{aligned}
$$

The radius of the circle is $\qquad$ inches.
19. The diameter of a circle is 24.6 centimeters. What is the length of its radius?

## Solve. Show your work.

## Example

The diameter of a clock face is 14 inches. Find the circumference of the clock face. Use $\frac{22}{7}$ as an approximation for $\pi$.


$$
\text { Circumference }=\pi d
$$



$$
\begin{aligned}
& \approx \frac{\frac{22}{7}}{2} \cdot \frac{14}{}=\frac{22}{2} \cdot \frac{2}{2}
\end{aligned}
$$

$$
=\text {. }
$$

$\qquad$ in.

The circumference of the face of the clock is approximately 44 inches.
20. The diameter of a bicycle wheel is 21 inches. Find the circumference of the wheel. Use $\frac{22}{7}$ as an approximation for $\pi$.


Circumference $=\pi d$
$\qquad$ $\cdot$ $\qquad$
= $\qquad$ $\cdot$
$=$ $\qquad$ in.

The circumference of the wheel is approximately $\qquad$ inches.
21. The diameter of each circular hole in a paint palette is 40 millimeters. Find the circumference of each hole. Use 3.14 as an approximation for $\pi$.


Name: $\qquad$ Date: $\qquad$

Solve. Show your work.

## Example

A circular pie is cut into two semicircles. Find the length of the crust around each part.
Use $\frac{22}{7}$ as an approximation for $\pi$.
Circumference $=\pi d$
A semicircle is one half of a circle.

$$
\begin{aligned}
& \approx \frac{\frac{22}{7}}{37 \frac{5}{7}} \cdot \frac{12}{\mathrm{in} .}
\end{aligned}
$$

Length of semicircular arc $=\frac{1}{2} \times$ circumference

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{37 \frac{5}{7}}{6 \frac{6}{7}} \\
& =1 \mathrm{in} .
\end{aligned}
$$



The length of the crust around each part is approximately $18 \frac{6}{7}$ inches.
22. A flexible ruler is bent into a semicircular arc. The length of $\overline{M N}$ is 15 inches.

Find the length of the ruler. Use 3.14 as an approximation for $\pi$.
Circumference $=\pi d$
$\approx$ $\qquad$ . $\qquad$
$=$ $\qquad$ in.

Length of semicircular arc $=\frac{1}{2} \times$ circumference

$$
=\frac{1}{2} \times
$$

$=$ $\qquad$ in.


The length of the ruler is approximately $\qquad$ inches.

Name: $\qquad$ Date:
23. A bag is in the shape of a semicircle. The length of $\overline{P Q}$ is 25 centimeters. A piece of lace is sewn along the semicircular part of the bag. Find the length of the lace. Use 3.14 as an approximation for $\pi$.


## Solve. Show your work.

## Example



A circle is cut into four quadrants. Find the length of each arc of the quadrant.
Use 3.14 as an approximation for $\pi$.
Circumference $=2 \pi r \longrightarrow \begin{aligned} & \text { Since, diameter }=2 \cdot \text { radius, another } \\ & \text { formula for circumference is } C=2 \pi\end{aligned}$

$$
\approx 2 \cdot 3.14 \cdot 4
$$

$$
=25.12 \mathrm{ft}
$$

Length arc of quadrant $=\frac{1}{4} \times$ circumference

$$
\begin{aligned}
& =\frac{1}{4} \times 25.12 \\
& =6.28 \mathrm{ft}
\end{aligned}
$$

The length of each arc of the quadrant is approximately $\qquad$ 6.28 feet.

24. A quadrant is cut from a square. The side of the square is 25 inches. Find the length of the arc of the quadrant. Use 3.14 as an approximation for $\pi$.

Circumference $=2 \pi r$
$\approx 2$. $\qquad$ - $\qquad$

$$
=
$$

$\qquad$ in.
25 in.


Length of arc of quadrant $=\frac{1}{4} \times$ circumference

$$
\begin{aligned}
& =\frac{1}{4} \times \ldots \\
& = \\
& i n .
\end{aligned}
$$

The length of the arc of the quadrant is approximately $\qquad$ inches.
25. A refrigerator magnet is in the shape of a quadrant. Find the length of the arc of the quadrant. Use $\frac{22}{7}$ as an approximation for $\pi$.


Name: $\qquad$

## Solve. Show your work.

## Example

The figure below is made up of a quadrant and two triangles. Find the distance around the figure. Use 3.14 as an approximation for $\pi$.


Circumference
$=2 \pi r$
$\approx 2 \cdot 3.14$ . $\qquad$
You can find the distance around the figure by finding the sum of the length of the arc of the quadrant, the radius, and the lengths of the two equal sides of the isosceles triangle.
$=\underline{100.48} \mathrm{~m}$

Length of arc of quadrant
$=\frac{1}{4} \times$ Circumference
$=\frac{1}{4} \times \underline{100.48}$
$=25.12 \mathrm{~m}$

Distance around the figure
$=$ length of arc of quadrant $+A B+B O+O C$
$=\underline{25.12}+\underline{18}+\underline{18}+\underline{16}$
$=\underline{77.12} \mathrm{~m}$
The distance around the figure is approximately $\qquad$ 77.12 meters.

Name: $\qquad$ Date:
26. The figure below is made up of a quadrant and two rectangles. Find the distance around the figure. Use 3.14 as an approximation for $\pi$.


$$
\begin{aligned}
& \text { Circumference } \\
& =\pi d \\
& \approx \\
& =\quad . \quad \mathrm{cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Length of arc of quadrant } \\
& =\frac{1}{4} \times \text { circumference } \\
& =\frac{1}{4} \times \ldots \\
& =
\end{aligned}
$$

Distance around the figure
$=$ length of arc of quadrant +6 . $\qquad$ +2 . $\qquad$
$={ }^{\square}+\ldots+$
$=$ $\qquad$ cm

The distance around the figure is approximately $\qquad$ centimeters.

Name: $\qquad$
27. The figure below is made up of a semicircle and a square. Find the distance around the figure. Use $\frac{22}{7}$ as an approximation for $\pi$.

28. The figure below is made up of a semicircle, a square, and an isosceles triangle. The length of $\overline{C D}$ is 13.3 feet. Find the distance around the figure. Use $\frac{22}{7}$ as an approximation for $\pi$.


Area of square $V W X Y=\ell^{2}$

$$
\begin{aligned}
& =\underline{11} \cdot \underline{11} \\
& =\underline{121} \mathrm{ft}^{2}
\end{aligned}
$$

Area of trapezoid STWX

$$
\begin{aligned}
= & \text { area of trapezoid STVY } \\
& + \text { area of square } V W X Y \\
= & \underline{242}+\underline{121} \\
= & \underline{363} \mathrm{ft}^{2}
\end{aligned}
$$

The area of trapezoid STWX is $\underline{363}$ square feet.
6. 65 square centimeters
7. 49.5 square feet
8. 495 square inches

## Chapter 11

## Lesson 11.1

1. 3.236
2. 5.051
3. 4.65
4. 7.755
5. 18.48
6. 18.84
7. 3.56
8. 0.34
9. 22
10. 60
11. 20.1
12. 1.0
13. $\overline{J M}$ and $\overline{K N}$.
14. $\overline{H K}$. It does not pass through the center $O$.
15. $\overline{O J}, \overline{O K}, \overline{O L}, \overline{O M}$, and $\overline{O N}$.
16. Diameter $=$ radius $\times \underline{2}$

$$
\begin{aligned}
& =\underline{13} \times \underline{2} \\
& =\underline{26} \mathrm{ft}
\end{aligned}
$$

The diameter of the circle is $\underline{26}$ feet.
17. 6.5 feet
18. Radius $=$ diameter $\div \underline{2}$

$$
\begin{aligned}
& =\underline{32} \div \underline{2} \\
& =\underline{16} \mathrm{in} .
\end{aligned}
$$

The radius of the circle is $\underline{16}$ inches.
19. 12.3 centimeters
20. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \frac{22}{7} \cdot \underline{21} \\
& =\underline{22} \cdot \underline{3} \\
& =\underline{66} \mathrm{in} .
\end{aligned}
$$

The circumference of the wheel is approximately 66 inches.
21. 125.6 millimeters
22. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{15} \\
& =\underline{47.1} \mathrm{in} .
\end{aligned}
$$

Length of semicircular arc
$=\frac{1}{2} \times$ circumference
$=\frac{1}{2} \times \underline{47.1}$
$=\underline{23.55} \mathrm{in}$.
The length of the ruler is approximately 23.55 inches.
23. 64.25 centimeters
24. Circumference $=2 \pi r$

$$
\begin{aligned}
& \approx 2 \cdot \underline{3.14} \cdot \underline{25} \\
& =\underline{157} \mathrm{in} .
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{157}$
$=\underline{39.25} \mathrm{in}$.
The length of the arc of the quadrant is approximately 39.25 inches.
25. 77 millimeters
26. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{26} \\
& =\underline{81.64} \mathrm{~cm}
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{81.64}$
$=\underline{20.41} \mathrm{~cm}$
Distance around the figure
$=$ length of arc of quadrant $+6 \cdot \underline{\frac{26}{2}}+2 \cdot \underline{26}$
$=20.41+\underline{78}+\underline{52}$
$=\underline{150.41} \mathrm{~cm}$
The distance around the figure is approximately 150.41 centimeters.
27. 50 inches
28. 58.5 feet

## Lesson 11.2

1. Area $=\pi r^{2}$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{5} \cdot \underline{5} \\
& =\underline{78.5} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the circle is approximately 78.5 square centimeters.
2. 12,474 square millimeters
3. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{56} \div 2 \\
& =\underline{28} \mathrm{ft}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& \approx \frac{22}{7} \times \underline{28} \times \underline{28} \\
& =\underline{2,464} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the circle is approximately 2,464 square feet.
4. 34,650 square meters

